

ADVANCED GCE MATHEMATICS Further Pure Mathematics 3

4727

Candidates answer on the Answer Booklet

### OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

#### Other Materials Required: None

Friday 29 January 2010 Morning

Duration: 1 hour 30 minutes



### INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

## **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

**1** Determine whether the lines

$$\frac{x-1}{1} = \frac{y+2}{-1} = \frac{z+4}{2} \quad \text{and} \quad \frac{x+3}{2} = \frac{y-1}{3} = \frac{z-5}{4}$$
v.
[5]

intersect or are skew.

- 2 *H* denotes the set of numbers of the form  $a + b\sqrt{5}$ , where *a* and *b* are rational. The numbers are combined under multiplication.
  - (i) Show that the product of any two members of *H* is a member of *H*. [2]

It is now given that, for a and b not both zero, H forms a group under multiplication.

- (ii) State the identity element of the group. [1]
- (iii) Find the inverse of  $a + b\sqrt{5}$ . [2]
- (iv) With reference to your answer to part (iii), state a property of the number 5 which ensures that every number in the group has an inverse. [1]
- 3 Use the integrating factor method to find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = \mathrm{e}^{-3x}$$

for which y = 1 when x = 0. Express your answer in the form y = f(x). [6]

4 (i) Write down, in cartesian form, the roots of the equation  $z^4 = 16$ . [2]

(ii) Hence solve the equation  $w^4 = 16(1 - w)^4$ , giving your answers in cartesian form. [5]

5 A regular tetrahedron has vertices at the points

$$A(0, 0, \frac{2}{3}\sqrt{6}), \quad B(\frac{2}{3}\sqrt{3}, 0, 0), \quad C(-\frac{1}{3}\sqrt{3}, 1, 0), \quad D(-\frac{1}{3}\sqrt{3}, -1, 0).$$

(i) Obtain the equation of the face ABC in the form

$$x + \sqrt{3}y + \left(\frac{1}{2}\sqrt{2}\right)z = \frac{2}{3}\sqrt{3}.$$
 [5]

(Answers which only verify the given equation will not receive full credit.)

(ii) Give a geometrical reason why the equation of the face ABD can be expressed as

$$x - \sqrt{3}y + (\frac{1}{2}\sqrt{2})z = \frac{2}{3}\sqrt{3}.$$
 [2]

(iii) Hence find the cosine of the angle between two faces of the tetrahedron. [4]

6 The variables *x* and *y* satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 16y = 8\cos 4x$$

- (i) Find the complementary function of the differential equation.
- (ii) Given that there is a particular integral of the form  $y = px \sin 4x$ , where p is a constant, find the general solution of the equation. [6]
- (iii) Find the solution of the equation for which y = 2 and  $\frac{dy}{dx} = 0$  when x = 0. [4]
- 7 (i) Solve the equation  $\cos 6\theta = 0$ , for  $0 < \theta < \pi$ . [3]
  - (ii) By using de Moivre's theorem, show that

$$\cos 6\theta \equiv (2\cos^2\theta - 1)(16\cos^4\theta - 16\cos^2\theta + 1).$$
 [5]

(iii) Hence find the exact value of

$$\cos\left(\frac{1}{12}\pi\right)\cos\left(\frac{5}{12}\pi\right)\cos\left(\frac{7}{12}\pi\right)\cos\left(\frac{11}{12}\pi\right),$$
[5]

[2]

justifying your answer.

- 8 The function f is defined by  $f: x \mapsto \frac{1}{2-2x}$  for  $x \in \mathbb{R}$ ,  $x \neq 0$ ,  $x \neq \frac{1}{2}$ ,  $x \neq 1$ . The function g is defined by g(x) = ff(x).
  - (i) Show that  $g(x) = \frac{1-x}{1-2x}$  and that gg(x) = x. [4]

It is given that f and g are elements of a group *K* under the operation of composition of functions. The element e is the identity, where  $e : x \mapsto x$  for  $x \in \mathbb{R}$ ,  $x \neq 0$ ,  $x \neq \frac{1}{2}$ ,  $x \neq 1$ .

- (ii) State the orders of the elements f and g. [2]
- (iii) The inverse of the element f is denoted by h. Find h(x). [2]
- (iv) Construct the operation table for the elements e, f, g, h of the group *K*. [4]

# 4727Mark Scheme4727 Further Pure Mathematics 3

| 1     | METHOD 1                                                                                                                                                                         |          |                                                     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------|
|       | line segment between $l_1$ and $l_2 = \pm [4, -3, -9]$                                                                                                                           | B1       | For correct vector                                  |
|       | $\mathbf{n} = [1, -1, 2] \times [2, 3, 4] = (\pm)[-2, 0, 1]$                                                                                                                     | M1*      | For finding vector product of direction             |
|       |                                                                                                                                                                                  | A1       | vectors                                             |
|       | distance = $\frac{ [4, -3, -9] \cdot [-2, 0, 1] }{\left(\sqrt{2^2 + 0^2 + 1^2}\right)} = \frac{17}{\left(\sqrt{5}\right)}$                                                       | M1       | For using numerator of distance formula             |
|       | $\left(\sqrt{2^2+0^2+1^2}\right) \qquad \left(\sqrt{3}\right)$                                                                                                                   | (*dep)   |                                                     |
|       | ≠ 0, so skew                                                                                                                                                                     | A1 5     | For correct scalar product                          |
|       |                                                                                                                                                                                  |          | and correct conclusion                              |
|       | METHOD 2 lines would intersect where $1 + 2 = 2 + 2t$                                                                                                                            | B1       | For correct parametric form for either              |
|       | $ \begin{array}{cccc} 1 & +s = -3 + 2t \\ -2 & -s = 1 + 3t \\ -4 + 2s = 5 + 4t \end{array} \Longrightarrow \begin{cases} s - 2t = -4 \\ s + 3t = -3 \\ 2s - 4t = 9 \end{array} $ | DI       | line                                                |
|       | -4 + 2s = 5 + 4t $2s - 4t = 9$                                                                                                                                                   | M1*      | For 3 equations using 2 different                   |
|       |                                                                                                                                                                                  | A 1      | parameters                                          |
|       |                                                                                                                                                                                  | A1<br>M1 | For attempting to solve                             |
|       |                                                                                                                                                                                  | (*dep)   | to show (in)consistency                             |
|       | $\Rightarrow$ contradiction, so skew                                                                                                                                             | A1       | For correct conclusion                              |
|       |                                                                                                                                                                                  | 5        |                                                     |
| 2 (i) | $(a+b\sqrt{5})(c+d\sqrt{5})$                                                                                                                                                     | M1       | For using product of 2 distinct elements            |
|       | $= ac + 5bd + (bc + ad)\sqrt{5} \in H$                                                                                                                                           | A1 2     | For correct expression                              |
| (ii)  | $(e=) 1 OR 1 + 0\sqrt{5}$                                                                                                                                                        | B1 1     | For correct identity                                |
| (iii) |                                                                                                                                                                                  | M1       | For correct inverse as $(a+b\sqrt{5})^{-1}$         |
|       | EITHER $\frac{1}{a+b\sqrt{5}} \times \frac{a-b\sqrt{5}}{a-b\sqrt{5}}$                                                                                                            | 111      | and multiplying top and bottom by                   |
|       | $OR \ \left(a+b\sqrt{5}\right)\left(c+d\sqrt{5}\right) = 1 \implies \begin{cases} ac+5bd = 1\\ bc+ad = 0 \end{cases}$                                                            |          | $a-b\sqrt{5}$                                       |
|       | bc + ad = 0                                                                                                                                                                      |          | OR for using definition and equating                |
|       | inverse = $\frac{a}{a^2 - 5b^2} - \frac{b}{a^2 - 5b^2}\sqrt{5}$                                                                                                                  |          | parts                                               |
|       | $a^2 - 5b^2$ $a^2 - 5b^2$ $a^2$                                                                                                                                                  | A1 2     | For correct inverse. Allow as a single              |
| (iv)  | 5 is prime $OR  \sqrt{5} \notin \mathbb{Q}$                                                                                                                                      | B1 1     | fraction                                            |
| (iv)  |                                                                                                                                                                                  | 6        | For a correct property (or equivalent)              |
| 3     | [2] 2                                                                                                                                                                            |          |                                                     |
| 3     | Integrating factor = $e^{\int 2dx} = e^{2x}$                                                                                                                                     | B1       | For correct IF                                      |
|       | $\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} (y \mathrm{e}^{2x}) = \mathrm{e}^{-x}$                                                                                               | M1       | For $\frac{d}{dx}(y$ their IF) = $e^{-3x}$ their IF |
|       | $\Rightarrow y e^{2x} = -e^{-x}(+c)$                                                                                                                                             | A1       | For correct integration both sides                  |
|       | $(0,1) \Rightarrow c = 2$                                                                                                                                                        | M1       | For substituting (0, 1) into their GS               |
|       |                                                                                                                                                                                  |          | and solving for <i>c</i>                            |
|       | $\Rightarrow y = -e^{-3x} + 2e^{-2x}$                                                                                                                                            | A1       | For correct $c$ f.t. from their GS                  |
|       | $\rightarrow yc + 2c$                                                                                                                                                            | A1 6     | For correct solution                                |
|       |                                                                                                                                                                                  | 6        |                                                     |
| 4 (i) | (z = ) 2, -2, 2i, -2i                                                                                                                                                            | M1       | For at least 2 roots of the                         |
| • (•) | ~ , _, _, _,                                                                                                                                                                     |          | form $k$ {1, i} <b>AEF</b>                          |
|       |                                                                                                                                                                                  | A1 2     | For correct values                                  |

| (ii)     | $\frac{w}{1-w} = 2, -2, 2i, -2i$                                                                                                                                                            | M1                    | For $\frac{w}{1-w}$ = any one solution from (i)                                                                                                                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | $w = \frac{z}{1+z}$                                                                                                                                                                         | M1                    | For attempting to solve for <i>w</i> , using any solution or in general                                                                                                                                                                              |
|          |                                                                                                                                                                                             | B1                    | For any one of the 4 solutions                                                                                                                                                                                                                       |
|          | $w = \frac{2}{3}, 2$                                                                                                                                                                        | A1                    | For both real solutions                                                                                                                                                                                                                              |
|          | $w = \frac{4}{5} \pm \frac{2}{5}i$                                                                                                                                                          | A1 5                  | For both complex solutions                                                                                                                                                                                                                           |
|          | 5 5                                                                                                                                                                                         |                       | <b>SR</b> Allow B1 $$ and one A1 $$ from $k \neq 2$                                                                                                                                                                                                  |
|          |                                                                                                                                                                                             | 7                     |                                                                                                                                                                                                                                                      |
| 5 (i)    | $\mathbf{AB} = k \left[ \frac{2}{3} \sqrt{3}, 0, -\frac{2}{3} \sqrt{6} \right],$                                                                                                            | B1                    | For any one edge vector of $\Delta ABC$                                                                                                                                                                                                              |
|          |                                                                                                                                                                                             | B1                    | For any other edge vector of $\Delta ABC$                                                                                                                                                                                                            |
|          | <b>BC</b> = $k \left[ -\sqrt{3}, 1, 0 \right]$ , <b>CA</b> = $k \left[ \frac{1}{3}\sqrt{3}, -1, \frac{2}{3}\sqrt{6} \right]$                                                                |                       |                                                                                                                                                                                                                                                      |
|          | $\mathbf{n} = k_1 \left[ \frac{2}{3} \sqrt{6}, \frac{2}{3} \sqrt{18}, \frac{2}{3} \sqrt{3} \right] = k_2 \left[ 1, \sqrt{3}, \frac{1}{2} \sqrt{2} \right]$                                  | M1                    | For attempting to find vector product of                                                                                                                                                                                                             |
|          | $\mathbf{n} = \kappa_1 \left[ \frac{1}{3}\sqrt{6}, \frac{1}{3}\sqrt{16}, \frac{1}{3}\sqrt{5} \right] - \kappa_2 \left[ 1, \sqrt{5}, \frac{1}{2}\sqrt{2} \right]$                            |                       | any two edges                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                                             | M1                    | For substituting $A$ , $B$ or $C$ into $\mathbf{r.n}$                                                                                                                                                                                                |
|          | substitute A, B or $C \implies x + \sqrt{3}y + \frac{1}{2}\sqrt{2}z = \frac{2}{3}\sqrt{3}$                                                                                                  | A1 5                  | For correct equation AG                                                                                                                                                                                                                              |
|          |                                                                                                                                                                                             |                       | SR For verification only allow M1, then                                                                                                                                                                                                              |
|          |                                                                                                                                                                                             |                       | A1 for 2 points and A1 for the third                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                             |                       | point                                                                                                                                                                                                                                                |
| (ii)     | Symmetry                                                                                                                                                                                    | B1*                   | For quoting symmetry or reflection                                                                                                                                                                                                                   |
|          | in plane $OAB$ or $Oxz$ or $y = 0$                                                                                                                                                          | B1                    | For correct plane                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                             | (*dep) <b>2</b>       | Allow "in y coordinates" or "in y axis"                                                                                                                                                                                                              |
|          |                                                                                                                                                                                             |                       | <b>SR</b> For symmetry implied by reference                                                                                                                                                                                                          |
|          |                                                                                                                                                                                             |                       | to opposite signs in $y$ coordinates of $C$                                                                                                                                                                                                          |
|          |                                                                                                                                                                                             |                       | and <i>D</i> , award B1 only                                                                                                                                                                                                                         |
| (:::)    | $\cos\theta = \frac{\left\  \left[ 1, \sqrt{3}, \frac{1}{2}\sqrt{2} \right] \cdot \left[ 1, -\sqrt{3}, \frac{1}{2}\sqrt{2} \right] \right\ }{\sqrt{1+3+\frac{1}{2}}\sqrt{1+3+\frac{1}{2}}}$ | M1                    | For using scalar product of normal                                                                                                                                                                                                                   |
| (iii)    | $\cos\theta = \frac{1}{1+3+\frac{1}{2}} \frac{1+3+\frac{1}{2}}{1+3+\frac{1}{2}}$                                                                                                            |                       | vectors                                                                                                                                                                                                                                              |
|          |                                                                                                                                                                                             | A1                    | For correct scalar product                                                                                                                                                                                                                           |
|          | $1 - 3 + \frac{1}{2}$ $\frac{3}{2}$ 1                                                                                                                                                       | M1                    | For product of both moduli in                                                                                                                                                                                                                        |
|          | $=\frac{\left 1-3+\frac{1}{2}\right }{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}$                                                                                             |                       | denominator                                                                                                                                                                                                                                          |
|          | 2 2                                                                                                                                                                                         | A1 4                  | For correct answer. Allow $-\frac{1}{3}$                                                                                                                                                                                                             |
|          |                                                                                                                                                                                             | 11                    |                                                                                                                                                                                                                                                      |
| <u> </u> | $\left(m^2 + 16 - 0 \rightarrow\right)$ $m - \pm 4$                                                                                                                                         | M1                    | For attempt to solve correct auxiliary                                                                                                                                                                                                               |
| 6 (i)    | $\left(m^2 + 16 = 0 \Longrightarrow\right) m = \pm 4i$                                                                                                                                      |                       | equation (may be implied by correct                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                             |                       | CF)                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                             |                       |                                                                                                                                                                                                                                                      |
|          | $CF = A\cos 4x + B\sin 4x$                                                                                                                                                                  | A1 2                  | For correct CF                                                                                                                                                                                                                                       |
|          | $CF = A\cos 4x + B\sin 4x$                                                                                                                                                                  | A1 2                  | For correct CF                                                                                                                                                                                                                                       |
|          |                                                                                                                                                                                             |                       | For correct CF<br>( <b>AEtrig</b> but not $Ae^{4ix} + Be^{-4ix}$ only)                                                                                                                                                                               |
|          |                                                                                                                                                                                             | A1 2<br>M1            | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,                                                                                                                                                      |
|          | $\frac{dy}{dx} = p \sin 4x + 4 px \cos 4x$                                                                                                                                                  | M1                    | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule                                                                                                                                |
|          |                                                                                                                                                                                             |                       | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,                                                                                                                                                      |
| (ii)     | $\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$                                                                                                                                   | M1                    | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule<br>For correct $\frac{dy}{dx}$                                                                                                 |
| (ii)     | $\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$                                                                                                                                   | M1                    | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule<br>For correct $\frac{dy}{dx}$                                                                                                 |
| (ii)     | $\frac{dy}{dx} = p \sin 4x + 4px \cos 4x$ $\frac{d^2 y}{dx^2} = 8p \cos 4x - 16px \sin 4x$                                                                                                  | M1<br>A1<br>A1√       | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule<br>For correct $\frac{dy}{dx}$<br>For unsimplified $\frac{d^2y}{dx^2}$ . f.t. from $\frac{dy}{dx}$                             |
| (ii)     | $\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$                                                                                                                                   | M1<br>A1<br>A1√<br>M1 | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule<br>For correct $\frac{dy}{dx}$<br>For unsimplified $\frac{d^2y}{dx^2}$ . f.t. from $\frac{dy}{dx}$<br>For substituting into DE |
| (ii)     | $\frac{dy}{dx} = p \sin 4x + 4px \cos 4x$ $\frac{d^2 y}{dx^2} = 8p \cos 4x - 16px \sin 4x$                                                                                                  | M1<br>A1<br>A1√       | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule<br>For correct $\frac{dy}{dx}$<br>For unsimplified $\frac{d^2y}{dx^2}$ . f.t. from $\frac{dy}{dx}$                             |
| (ii)     | $\frac{dy}{dx} = p \sin 4x + 4px \cos 4x$ $\frac{d^2 y}{dx^2} = 8p \cos 4x - 16px \sin 4x$ $\Rightarrow 8p \cos 4x = 8 \cos 4x$                                                             | M1<br>A1<br>A1√<br>M1 | For correct CF<br>(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)<br>For differentiating PI twice,<br>using product rule<br>For correct $\frac{dy}{dx}$<br>For unsimplified $\frac{d^2y}{dx^2}$ . f.t. from $\frac{dy}{dx}$<br>For substituting into DE |

| (iii) | $(0, 2) \Longrightarrow A = 2$                                                                                       | B1√      |   | For correct A. f.t. from their GS                                                     |
|-------|----------------------------------------------------------------------------------------------------------------------|----------|---|---------------------------------------------------------------------------------------|
|       | $\frac{\mathrm{d}y}{\mathrm{d}x} = -4A\sin 4x + 4B\cos 4x + \sin 4x + 4x\cos 4x$                                     | M1       |   | For differentiating their GS                                                          |
|       | $x = 0, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies B = 0$                                                        | M1       |   | For substituting values for x and $\frac{dy}{dx}$                                     |
|       | $\Rightarrow y = 2\cos 4x + x\sin 4x$                                                                                | A1       | 4 | to find <i>B</i><br>For stating correct solution<br><b>CAO</b> including $y =$        |
|       |                                                                                                                      | 12       | 2 |                                                                                       |
| 7 (i) | $\cos 6\theta = 0 \Longrightarrow 6\theta = k \times \frac{1}{2}\pi$                                                 | M1       |   | For multiples of $\frac{1}{2}\pi$ seen or implied                                     |
|       | $\Rightarrow \theta = \frac{1}{12}\pi\{1, 3, 5, 7, 9, 11\}$                                                          | A1<br>A1 | 3 | A1 for any 3 correct<br>A1 for the rest, and no extras in<br>$0 < \theta < \pi$       |
| (ii)  | METHOD 1                                                                                                             |          |   |                                                                                       |
|       | $\operatorname{Re}(c+\mathrm{i}s)^{6} = \cos 6\theta = c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6}$                  | M1       |   | For expanding $(c+is)^6$<br>at least 4 terms and 2 binomial<br>coefficients needed    |
|       |                                                                                                                      | A1       |   | For 4 correct terms                                                                   |
|       | $\cos 6\theta = c^6 - 15c^4(1 - c^2) + 15c^2(1 - c^2)^2 - (1 - c^2)^3$                                               | M1       |   | For using $s^2 = 1 - c^2$                                                             |
|       | $\Rightarrow \cos 6\theta = 32c^6 - 48c^4 + 18c^2 - 1$                                                               | A1       |   | For correct expression for $\cos 6\theta$                                             |
|       | $\Rightarrow \cos 6\theta = (2c^2 - 1)(16c^4 - 16c^2 + 1)$                                                           |          | 5 | For correct result <b>AG</b><br>(may be written down from<br>correct $\cos 6\theta$ ) |
|       | METHOD 2                                                                                                             |          |   | · · · · · · · · · · · · · · · · · · ·                                                 |
|       | $\operatorname{Re}(c+\mathrm{i} s)^3 = \cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$                    | M1       |   | For expanding $(c+is)^3$<br>at least 2 terms and 1 binomial<br>coefficient needed     |
|       |                                                                                                                      | A1       |   | For 2 correct terms                                                                   |
|       | $\Rightarrow \cos 6\theta = \cos 2\theta \left(\cos^2 2\theta - 3\sin^2 2\theta\right)$                              | M1       |   | For replacing $\theta$ by $2\theta$                                                   |
|       | $\Rightarrow \cos 6\theta = \left(2\cos^2 \theta - 1\right) \left(4\left(2\cos^2 \theta - 1\right)^2 - 3\right)$     | A1       |   | For correct expression in $\cos\theta$ (unsimplified)                                 |
|       | $\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$                                     | A1       |   | For correct result AG                                                                 |
| (iii) | METHOD 1                                                                                                             |          |   |                                                                                       |
|       | $\cos 6\theta = 0$                                                                                                   | M1       |   | For putting $\cos \theta = 0$                                                         |
|       | $\Rightarrow 6 \text{ roots of } \cos \theta = 0 \text{ satisfy} \\ 16c^4 - 16c^2 + 1 = 0 \text{ and } 2c^2 - 1 = 0$ | A1       |   | For association of roots with quartic and quadratic                                   |
|       | But $\theta = \frac{1}{4}\pi, \frac{3}{4}\pi$ satisfy $2c^2 - 1 = 0$                                                 | B1       |   | For correct association of roots with                                                 |
|       | <i>EITHER</i> Product of 4 roots <i>OR</i> $c = \pm \frac{1}{2}\sqrt{2 \pm \sqrt{3}}$                                | M1       |   | quadratic<br>For using product of 4 roots<br><i>OR</i> for solving quartic            |
|       | $\Rightarrow \cos\frac{1}{12}\pi \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cos\frac{11}{12}\pi = \frac{1}{16}$        | A1       | 5 | For correct value (may follow A0 and B0)                                              |

|       | METHOD 2                                                                                                                                                          |      |                                                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------|
|       | $\cos \theta = 0$                                                                                                                                                 | M1   | For putting $\cos \theta = 0$                                                                                            |
|       | $\Rightarrow$ 6 roots of cos6 $\theta$ = 0 satisfy                                                                                                                | A1   | For association of roots with sextic                                                                                     |
|       | $32c^6 - 48c^4 + 18c^2 - 1 = 0$                                                                                                                                   |      |                                                                                                                          |
|       | Product of 6 roots $\Rightarrow$                                                                                                                                  | M1   | For using product of 6 roots                                                                                             |
|       | $\cos\frac{1}{12}\pi \cdot \frac{1}{\sqrt{2}} \cdot \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos\frac{11}{12}\pi = -\frac{1}{32}$ | B1   | For using $\cos\left\{\frac{3}{12}\pi, \frac{9}{12}\pi\right\} = \left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$ |
|       | $\cos\frac{1}{12}\pi\cos\frac{5}{12}\pi\cos\frac{7}{12}\pi\cos\frac{11}{12}\pi = \frac{1}{16}$                                                                    | A1   | For correct value                                                                                                        |
|       |                                                                                                                                                                   | 13   |                                                                                                                          |
| 8 (i) | $g(x) = \frac{1}{2-2 \cdot \frac{1}{2-2x}} = \frac{2-2x}{2-4x} = \frac{1-x}{1-2x}$                                                                                | M1   | For use of $ff(x)$                                                                                                       |
|       | $2-2 \cdot \frac{1}{2-2x} = \frac{2-4x}{1-2x}$                                                                                                                    | A1   | For correct expression AG                                                                                                |
|       |                                                                                                                                                                   |      |                                                                                                                          |
|       | $1 - \frac{1 - x}{1 - x}$                                                                                                                                         |      |                                                                                                                          |
|       | $gg(x) = \frac{1}{1-2x} = \frac{-x}{1-x} = x$                                                                                                                     | M1   | For use of $gg(x)$                                                                                                       |
|       | $gg(x) = \frac{1 - \frac{1 - x}{1 - 2x}}{1 - 2 \cdot \frac{1 - x}{1 - 2x}} = \frac{-x}{-1} = x$                                                                   | A1 4 | For correct expression AG                                                                                                |
| (ii)  | Order of $f = 4$                                                                                                                                                  | B1   | For correct order                                                                                                        |
|       | order of $g = 2$                                                                                                                                                  | B1 2 | For correct order                                                                                                        |
| (iii) | METHOD 1                                                                                                                                                          |      |                                                                                                                          |
|       | $y = \frac{1}{2 - 2x} \Longrightarrow x = \frac{2y - 1}{2y}$                                                                                                      | M1   | For attempt to find inverse                                                                                              |
|       | $\Rightarrow f^{-1}(x) = h(x) = \frac{2x-1}{2x} OR \ 1 - \frac{1}{2x}$                                                                                            | A1 2 | For correct expression                                                                                                   |
|       | METHOD 2                                                                                                                                                          |      |                                                                                                                          |
|       | $f^{-1} = f^3 = fg \text{ or } gf$                                                                                                                                | M1   | For use of $fg(x)$ or $gf(x)$                                                                                            |
|       | f g(x) = h(x) = $\frac{1}{2 - 2\left(\frac{1 - x}{1 - 2x}\right)} = \frac{1 - 2x}{-2x}$                                                                           | A1   | For correct expression                                                                                                   |
| (iv)  |                                                                                                                                                                   |      |                                                                                                                          |
|       | e f g h                                                                                                                                                           | M1   | For correct row 1 and column 1                                                                                           |
|       | e e f g h                                                                                                                                                         | A1   | For e, f, g, h in a latin square                                                                                         |
|       | f f g h e<br>g g h e f                                                                                                                                            | A1   | For correct diagonal e - g - e - g                                                                                       |
|       | g g h e f<br>h h e f g                                                                                                                                            | A1 4 | For correct table                                                                                                        |
|       |                                                                                                                                                                   | 12   |                                                                                                                          |
|       |                                                                                                                                                                   |      |                                                                                                                          |